If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+32x-10=0
a = -16; b = 32; c = -10;
Δ = b2-4ac
Δ = 322-4·(-16)·(-10)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{6}}{2*-16}=\frac{-32-8\sqrt{6}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{6}}{2*-16}=\frac{-32+8\sqrt{6}}{-32} $
| 11b=176 | | 4y+6y-8=7y+10+6y | | 16x^2-32x-10=0 | | 2x^2-32x-10=0 | | 10i−4=56 | | -1/8(4+x)=-5/6 | | 1/6y-1/8(20-y)=1 | | 0.57=8/x | | 10x+19-2x=14x-14-3x | | 1/3x^2-1=15 | | 35=7⋅2⋅b | | 8x-14+30x=2x+3x+24 | | 8x-37=+71 | | 204=a-149 | | 8x-37=71 | | 18=m-15 | | g-39=117 | | d=1/2(9.8(100)^2) | | d=1/2(9.8100^2) | | 12a-4=20 | | 13x+35x-1=6x-6 | | 3x+1=19+2x | | 24-4x=27-12x | | 2x3^x=54 | | 10y-12=-14+12y | | 4-z/16=15 | | 50(6=r)=475 | | 2x+16=10x+8 | | 21-2b=22 | | (m−29)÷13=25 | | 7y-15=3y-35 | | 8x+22=20 |